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ABSTRACT 

We prove that the joint spectrum of the tensor product of several operators 
is the cartesian product of their spectra. 

Let Xt, .- . ,  X, be complex Banach spaces and let W be the completion of 

X1 ® "" @ X, with respect to some crossnorm (cf., e.g., [1, 2]). Let Ik be the 

identity operator and Ak an arbitrary bounded operator on Xk, 1 < k < n. Set 

Tl = A l  ® I2 ® "" ® I ., T2 = Ix ® A2 (~ "" @ I n and Tk = I t  @ ... @ Ik_ 1 

® A k ®. . .  ® I ,  in general. The operators T~ obviously commute, and we have 

(1) a(Tk) = a(Ak), 1 <-- k <- n. 

Let B be the double commutant of T l, ..., T,, i.e., the set of those bounded 

operators on W which commute with any operator commuting with all of the Tk. 

B is a commutative Banach algebra. A complex vector (21,..., 2,) is in the joint 

resolvent p (T x, "-,  T,) of the Tk if there are operators Ck in B such that 

(2) ~ Ck (Tk -- 2k) = I = I 1 ® . . .  ® I , .  
1 

Otherwise it is in the joint spectrum a(T1, ..., T,). In this note we shall give a 

proof of the following 

THEOREM 1. A complex vector (2x, ... ,2,) is in a (T1, ..., T,) if  and only i f  

2k ea(Ak),  1 < k <- n. In symbols 

(3) a(T1, ..., T,) = f i  a(Ak). 
1 

Let U(zl,  . . . , z , )be  a rational function without singularities on a(T1,"" T , ) I t  

was shown in [3] that 

(4) a[U(T1, "", T,)] = Via(T1,  .-., T,)]. 

An immediate consequence of (4) and Theorem 1 is 
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COROLLARY 1. A complex number# is in a[U(T1, ..., T,)] if  andonly if  thereare 

complex numbers 21,'",).r. such that 2~ e a (Ak) , 1 < k < n, and # = U(21,... ,2.). 

Corollary 1 was proved in [4] without the use of Theorem 1. The case U(zl, z2) 

= zl z2 was previously considered in [5]. It might appear that the approach of 

the present paper to proving Corollary 1 is simpler than that of [4]. This is illusory 

since our present approach needs the Gelfand representation theorem (in the proof 

of (4)) while that of [4] does not. 

We now give the 

Proof of Theorem 1. If  J .kEp(Ak) for  some k, then (21,...,;in) is in p 

(T~,..., T,). For we can take Ck = (Tk -- 2k)- 1 and Cj = 0 for j ~ k in (2). Thus 

(5) or(T1, ..., T~) c l~I a(ak). 
1 

Thus it suffices to show that 2kea(Ak) for each k imples that (21,...,2,) is in 

a(T1, ..., T,). We may assume each 2k = 0. Since 0 e a(Ak), we have either a 

sequence {Xk,,} of elements in Xk such that 

(6) tl Zkm II = l'hkZkm -'-> 0 as m ~ 

or a sequence {Z~} of elements in X~ such that 

(7) II Z;, II = 1, hE Zk,, ~ 0 as m ~ oo 

(here X~ denotes the dual space of Xk and A k' the conjugate of Ak), or both (6) 

and (7) hold. By reordering the spaces Xk if necessary, we may assume that there 

is an integer t such that 0 <_ t _< n and (6) holds for 1 _< k _< t while (7) holds 

f o r t < k < n .  

For 1 < k < t let Z~,, e X~ be such that 

(8) I[ Zk" II = 1 and ~(k'~ (Zk.) = 1, 

and for t < k < n let Xkm ~ Xk be such that 

(9) II ~km 11 = 1 and [Z£,,(Zk,n)[ > 1 -- 1 
m 

Set 

Then by (8) and (9) 

(10) 

! ! 
~m = ~ l m ( ~ ' " ~ ) ~ l m ,  ~m = ~lm(~'"(~nm" 

[ z ' ( z ° ) [  1 - - ,  1 as  m - ,  
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Now suppose there existed operators C k E W such that 

(11) ~ C k T k = I. 
1 

Then 

Thus by (11) 

~(tm(E C k TkZm) : ~=~ •t (CkTkXm) 21- TktXg (CkZm). 
k k=l  k=t+ l  

t 

I x~' (x~)l ~ x IIc~ I[ II AkZkm 11 + ~ II c~ II 11 Atk~km !l 
k=l  k=t+ l  

4 0  as m-~ oo. 

This contradicts (10). Thus (11) cannot hold and the proof is complete. 
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