TENSOR PRODUCTS AND JOINT SPECTRA

BY

A. T. DASH AND M. SCHECHTER

ABSTRACT

We prove that the joint spectrum of the tensor product of several operators is the cartesian product of their spectra.

Let X_1, \dots, X_n be complex Banach spaces and let W be the completion of $X_1 \otimes \dots \otimes X_n$ with respect to some crossnorm (cf., e.g., [1, 2]). Let I_k be the identity operator and A_k an arbitrary bounded operator on X_k , $1 \le k \le n$. Set $T_1 = A_1 \otimes I_2 \otimes \dots \otimes I_n$, $T_2 = I_1 \otimes A_2 \otimes \dots \otimes I_n$ and $T_k = I_1 \otimes \dots \otimes I_{k-1} \otimes A_k \otimes \dots \otimes I_n$ in general. The operators T_i obviously commute, and we have (1) $\sigma(T_k) = \sigma(A_k), \ 1 \le k \le n$.

Let B be the double commutant of T_1, \dots, T_n , i.e., the set of those bounded operators on W which commute with any operator commuting with all of the T_k . B is a commutative Banach algebra. A complex vector $(\lambda_1, \dots, \lambda_n)$ is in the joint resolvent $\rho(T_1, \dots, T_n)$ of the T_k if there are operators C_k in B such that

(2)
$$\sum_{1}^{n} C_{k}(T_{k} - \lambda_{k}) = I = I_{1} \otimes \cdots \otimes I_{n}$$

Otherwise it is in the joint spectrum $\sigma(T_1, \dots, T_n)$. In this note we shall give a proof of the following

THEOREM 1. A complex vector $(\lambda_1, \dots, \lambda_n)$ is in $\sigma(T_1, \dots, T_n)$ if and only if $\lambda_k \in \sigma(A_k), 1 \leq k \leq n$. In symbols

(3)
$$\sigma(T_1, \dots, T_n) = \prod_{1}^n \sigma(A_k).$$

Let $U(z_1, \dots, z_n)$ be a rational function without singularities on $\sigma(T_1, \dots, T_n)$ It was shown in [3] that

(4)
$$\sigma[U(T_1, \dots, T_n)] = U[\sigma(T_1, \dots, T_n)].$$

An immediate consequence of (4) and Theorem 1 is

Received December 17, 1969,

COROLLARY 1. A complex number μ is in $\sigma[U(T_1, \dots, T_n)]$ if and only if there are complex numbers $\lambda_1, \dots, \lambda_n$ such that $\lambda_k \in \sigma(A_k)$, $1 \leq k \leq n$, and $\mu = U(\lambda_1, \dots, \lambda_n)$.

Corollary 1 was proved in [4] without the use of Theorem 1. The case $U(z_1, z_2) = z_1 z_2$ was previously considered in [5]. It might appear that the approach of the present paper to proving Corollary 1 is simpler than that of [4]. This is illusory since our present approach needs the Gelfand representation theorem (in the proof of (4)) while that of [4] does not.

We now give the

Proof of Theorem 1. If $\lambda_k \in \rho(A_k)$ for some k, then $(\lambda_1, \dots, \lambda_n)$ is in $\rho(T_1, \dots, T_n)$. For we can take $C_k = (T_k - \lambda_k)^{-1}$ and $C_j = 0$ for $j \neq k$ in (2). Thus

(5)
$$\sigma(T_1, \cdots, T_n) \subset \prod_{1}^n \sigma(A_k).$$

Thus it suffices to show that $\lambda_k \in \sigma(A_k)$ for each k imples that $(\lambda_1, \dots, \lambda_n)$ is in $\sigma(T_1, \dots, T_n)$. We may assume each $\lambda_k = 0$. Since $0 \in \sigma(A_k)$, we have either a sequence $\{\chi_{km}\}$ of elements in X_k such that

(6)
$$\|\chi_{km}\| = 1, A_k \chi_{km} \to 0 \text{ as } m \to \infty$$

or a sequence $\{\chi'_{km}\}$ of elements in X'_k such that

(7)
$$\|\chi'_{km}\| = 1, A'_k \chi'_{km} \to 0 \text{ as } m \to \infty$$

(here X'_k denotes the dual space of X_k and A'_k the conjugate of A_k), or both (6) and (7) hold. By reordering the spaces X_k if necessary, we may assume that there is an integer t such that $0 \le t \le n$ and (6) holds for $1 \le k \le t$ while (7) holds for $t < k \le n$.

For $1 \leq k \leq t$ let $\chi'_{km} \in X'_k$ be such that

(8)
$$\|\chi_{km}'\| = 1 \text{ and } \chi_{km}'(\chi_{km}) = 1,$$

and for $t < k \leq n$ let $\chi_{km} \in X_k$ be such that

(9)
$$\|\chi_{km}\| = 1 \text{ and } |\chi'_{km}(\chi_{km})| > 1 - \frac{1}{m}$$

Set

$$\chi_m = \chi_{1m} \otimes \cdots \otimes \chi_{1m}, \, \chi'_m = \chi'_{1m} \otimes \cdots \otimes \chi'_{nm}.$$

Then by (8) and (9)

(10)
$$\left|\chi'_{m}(\chi_{m})\right| \geq \left(1-\frac{1}{m}\right)^{n} \to 1 \text{ as } m \to \infty.$$

Vol. 8, 1970

Now suppose there existed operators $C_k \in W$ such that

(11)
$$\sum_{1}^{n} C_{k} T_{k} = I.$$

Then

$$\chi'_{m}(\sum_{k} C_{k} T_{k} \chi_{m}) = \sum_{k=1}^{t} \chi'_{m}(C_{k} T_{k} \chi_{m}) + \sum_{k=t+1}^{n} T_{k}' \chi'_{m}(C_{k} \chi_{m}).$$

Thus by (11)

$$\left|\chi_{m}'(\chi_{m})\right| \leq \sum_{k=1}^{t} \left\|C_{k}\right\| \left\|A_{k}\chi_{km}\right\| + \sum_{k=t+1}^{n} \left\|C_{k}\right\| \left\|A_{k}'\chi_{km}'\right\|$$

$$\to 0 \text{ as } m \to \infty.$$

This contradicts (10). Thus (11) cannot hold and the proof is complete.

References

1. Rober Schatten, A theory of cross-spaces, Ann. Math. Studies No. 26, Princeton Univ. Press, Princeton, N. J., 1950.

2. Francois Treves, Topological vector spaces, distributions and kernels, Academic Press, N.Y., 1967.

3. A. Guichardet, Special topics in topological algebras, Gordon and Breach, New York, 1968.

4. Martin Schechter, On the spectra of operators on tensor products, Journal Functional Analysis 4 (1969), 95-99.

5. Arlen Brown and Carl Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162–169.

UNIVERSITY OF GUELPH AND YESHIVA UNIVERSITY, NEW YORK